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Conditions for the finiteness and for the infiniteness of bound states of N-body
Schrodinger operators are presented. These bound states correspond to eigenvalues
below the essential spectrum of the operator. Previous work of the authors which
extended geometric methods and localization techniques of Agmon are used to
establish these conditions. An application to a diatomic system having NV electrons
and two nuclei is given.

1. Introduction

In Evans et al. (1991 a) we extended geometric methods (or localization techniques)
of Agmon (1982) to the study of the finiteness or infiniteness of the discrete spectra
of Schrodinger-type operators with non-isotropic potentials. The methods have a
long history of contributions coming largely from studies of N-body operators of
quantum mechanics; see the extensive list of references in Cycon et al. (1987). The
lecture notes of Agmon (1982) showed that much of this work fits well within the
study of elliptic partial differential operators in a Hilbert space. However, this
required that the potential be non-isotropic and not bounded below at co contrary
to much of the classical work in this area. It was in that spirit that the work in Evans
et al. (1991 a) was done.

Our purpose is to continue the work in Evans et al. (1991 a) applying the results to
Schrodinger operators of molecular-type. However, in this paper we do not restrict
our operators to the symmetry subspaces required by the Pauli exclusion principle.
This refinement will be pursued in later work. Our aim is to make the results as
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114 W.D. Evans, R. T. Lewis and Y. Saito

accessible as possible to researchers who are not necessarily specialist in this area.
Many of the details appear in the Appendix.

In §2 the results in Evans et al. (1991a) are applied to N-body Schrodinger
operators. It is shown that one of the hypotheses, #(1) in Evans ef al. (1991a),
required for non-isotropic Schrédinger operators always holds for N-body operators.
This simplifies the basic theorem considerably. In §3 we show how the methods and
results in Agmon (1982) and Evans ef al. (1991 a) complement the classical theory for
N-body Schrodinger operators of molecular-type. In §4 criteria for the finiteness and
for the infiniteness of bound states of N-body operators are given within the
framework presented in §2 and §3. Here, we draw heavily upon ideas developed by
Sigal (1982), who recognized the importance of geometric methods in the
fundamental work of Zhislin (1960, 1969, 1971). We first look at the case in which the
least point of the essential spectrum of the operator is equal to the infimum of the
spectrum of subsystems which corresponds to an m-cluster decomposition in which
m may be greater than 2. The typical assumption for criteria for the finiteness of
bound states is that this happens only when m = 2. Making this assumption we
present specific results which are easy to apply using the oscillation theory of
ordinary differential equations. Finally, in §5 we give an application to a diatomic
molecule with respect to the breakup of the system into two atomic subsystems. The
nuclear motion is not restricted and the kinetic energy of both nuclei is included in
the hamiltonian. Recent work of Ruskai (1989, 1990, 1991) concerned with the
stability of such systems has been a significant source of information for us here. We
compare these results with hers.

Agmon (1982) introduced the following generalized N-body Schrodinger operator:

P=— % a70,0;+q(x), xeR"
1,j=1

Here, each a” is a real number and the matrix 4 = (a”) is assumed to be symmetric
and positive definite. We will want to view X7, 40,0, as being the Laplace-
Beltrami operator on R™ with the inner product defined by

n
(x,y)= X ayx;y; for A '= (@)
i,j=1

The potential is assumed to be of the form
!

(@)= X q,(x).
i=1

For distinet non-zero projections I7;,7 = 1,..., 1, on R" each g, is assumed to be a rcal-
valued function on R satisfying

(1) qi(x) = q,(I1; x),

(i) q(x)—0 as | x]—>00, (1.1)
(iii) for ¥, = Range (I;), qly, € L1,.(Y), .
(iv) (qi)—l}’iejuloc(»y;)»

where || denotes the norm in R™ (for any n = 1).

Phil. Trans. R. Soc. Lond. A (1992)
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N-body Schréodinger operators 115

Here, M(R") =M, (R") is the Kato class of functions defined as follows: for

x,y € R" define g i >3

g@,y) =1 |Injx—y| if n=2,
1 if n=1.

Then, ge M(R™), if, and only if ge Ll (R") and

loc
lim 9(x, y)lg(y)l dy =0
r->0 J B(z;r)

uniformly in . If for every x€ R™ there is aneighbourhood U of x such that y,,ge M(R™),
where y, is the characteristic function of U, then we will say that ¢ge M, . (R"). By
(¢;)-ly, we mean the restriction of (¢;)_ = max (—q,0) to the subspace ¥;.

With these requirements we may regard P as being the operator associated with
the closure of the form

(¢, Y] = Ln((AV¢(x),V¢(x))xn+9(x)¢(x)wx_)) dz, ¢,9eCF(R).

The fact that 7 is closable is discussed in Proposition 1 of Evans & Lewis (1990).

2. N-body Schrodinger operators
The classical N-body Schrodinger operator is given by

N
- 1 -
H=-=Y-—A+ X V; 2zex} R ~RY,
i=1 i 1<i<j<N
where I7if(x) = vy’ =) for x = (2',...,2") and x Y, R" is the N-fold cartesian

product of R*. The laplacian A, is interpreted as the laplacian with respect to the
variable 2’ e R". Each 2’ is considered to be the position of a particle of mass m,.
The functions v;;: R"— R’ for 1 <14 < j < N satisfy the following conditions:

(1) ?)ijEL{oc(Ru)a
(”) (Uij)— EMIOO(RU)’ (21)
(iii) lim v;(y) = 0.

[y]->00

To see that H is a special case of P, consider the projections
I x N R > x N R, 1 <i<j<N,
defined by
my/(m;+m,) (x'—a’) for k=1,
(T 2)* = {mi/(mi+mj) (' —at) for k=j,
0 when k#¢ and k#j.
Then each ﬁj(ﬂw x) = Zj(x). Set

V:: 2 ij
1<i<j<N

corresponding to the potential ¢ associated with P.

Phil. Trans. R. Soc. Lond. A (1992)
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116 W. D. Evans, R. T. Lewis and Y. Saito
Let X be the set x ¥, R’ with an inner product defined by
N . .
{eypz= X 2my(2". y),
i=1

where (-,"), is the usual inner product in R". Then, the Laplace-Beltrami operator
associated with this new inner product is just

N
1
AX~:: E

— A
i1 2my '

and H = —A 3+ V. We denote the self-adjoint realization of A in L2(X) by H also. (If
[ is the natural identification of points in X with points in R"N, recall that
statements such as ¢peL3(X) or ¢e P (X) should be interpreted as ¢ol3 being in
either LA*(R"™) or CP(R"™M).)

It is common practice in quantum mechanics to study [ after the removal of the
motion of the centre of mass of the system of particles. (The operator H has no
eigenvalues (see Agmon 1982).) This is done by restricting H to a v(N—1)-
dimensional subspace X of x ¥, R" in which the centre of mass is taken to be at the
origin. Hence, N
X= {xe XN/ R":Y mat = 0}.

i=1
An inner product (-, >y on X is given by restricting {(, >3 to X.
Denote the Laplace-Beltrami operator in X by Ay. Let

H=—A,+V(x), for V= V!X

and xe X. We may regard Ay as being the part of Az = 2, (1/2m;) A, acting on X.
Let I, be the identity matrix in R” and (== diag (2m,[,,...,2my [ ). There is a non-
singular matrix Ty = (t;1,); ;—, .y, such that

! y'
0 I I I F
N ] 0
2] 0
and T, = (") , reXt
xN— ?/N

There is an (N—1)p x (N—1)» submatrix, Gy, of Ty G~ T% such that

1

Y
Ay =div, (G4V,) for 5= 1/‘]
0
We refer the reader to the Appendix for more details.

Phil. Trans. R. Soc. Lond. A (1992)
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N-body Seliididinger operators 117
Agmon (1982) refers to H as the ‘reduced N-body Schrédinger operator’. Let
Viy= Vylx. Since cach IT;;: X X, then we still have that
Vil ) = Vy(x) = vy’ —af) for x=(a',....2")eX

and 1 < ¢ < j < N. Therefore, we may also consider H as being an operator in the
form given by P above. In particular, Lemma 4,8 of Agmon (1982) applies to the self-
adjoint realization of H in L*(X) (which we continue to denote by H). This will be
important for our later discussions.

In general, we take H to be the operator associated with the closure of the form

Pl )= f ((vayqs,vyw)m«v—»Jr s wj<y>¢<y>m)dxy,
X

1<i<j&<N
for ¢, yr e OF(X); we still denote the image of the subspace X under the transformation
associated with 7% by X; and
dyy=+/(det (GM) dy*...dy"N !

is the measure induced by the inner product

oy = Gy, 2)pw-n, y,zeX.
Note that the inner product (-, >, is the restriction of (-, > ¢ to X as shown in the

Appendix. Henceforth, we write dy instead of d y.
We denote the unit sphere in X by

SX)={weX |o|, =1}
for o]y = v {w,w) y. For any set U = S(X) we let
dist (0:U) = 1inf{Jjo—u|y:ueU}.
Here, ||| is the norm in L*(X).

Definition 2.1. For any set U < S(X) and for positive numbers R and & define
(i) A(H) = infip[$]: e CF(X), |4 = 1}:

(i) 2(H) =info,(H), the least point of the essential spectrum of H;

(iii) U= {weSX): dist (w:U) < 6};

(iv) I'(U, R) ={xeX:x = tw for ve U and t > R};

(

(

1

v) K(U, B H) = inf{plg]|:pe O (N0, R)), gl = 1}:

vi) K(U:H) = limy o limg, K(U, R;H); and

(vil) M ={weS(X):K(w:H) = inf, g v, K(w:H)}, where we write K(w:H) instead of
K({w}:H).

The conditions which are required of V(z) imply that A(H) > — oo, which is needed
to insure that p is bounded below (see Agmon 1982, p. 67). In Evans et al. (1991 a)
we have shown that for any U < S(X)

KWU:H)=KU:H)=infK(w:H). (2.2)

wel
Moreover, Agmon (1982) showed

Lemma 2.2. The function K(w)=K(w:H) of weS(X) is lower semicontinuous and

min K(w) = 2(H).

weS(X)

Phil. Trans. R. Soc. Lond. A (1992)
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118 W. D. Evans, R. T. Lewis and Y. Saitd

Therefore, we know that K(.# :H) = X(H).
Next, we wish to apply our results in Evans et al. (1991a) to give criteria for the
finiteness and for the infiniteness of o(H) N (— o0, X(H)] where o(H) is the spectrum

of H.
For § > 0 and R > 0 let y, be the characteristic function for

A=A, R)=I(My R\I'(M;,,2R),
where # is described in Definition 2.1. For 8, R, and each ¢ > 0 we define the form
- € Yoo
pldl = plo; 0, Rl = plg]— j —sXalglde, pe ).
B(R)® ||

Since p is closable in L2(X) and the perturbation above is p-bounded with p-bound

0, then p, is closable in L*(X). If
H,=H—(e/lx*) X4
is the operator associated with the closure of p, then
X(H)=K(M:H)=K( H)=2(H).

Now, we state the main theorem of §2.

Theorem 2.3. In order that o(H) N (— oo, X(H)] be finite it is sufficient that there exist
8, >0,¢>0, and Ry, > 0 such that

K(Mly Ry H,) = E(H).

A necessary condition for the finiteness of o(H) N (— o0, 2(H)] ts that for some 0,>0
and some Ry > 0
K(AMs, Ry H) = 2(H).

Proof. A more general form of this theorem is given by Theorems 8 and 13 in Evans
et al. (1991a). Hypothesis #(1) of Evans et al. (1991a) follows easily here by using
(2.1) (ii) and (iii) to show that V_e M(X). Then apply Lemma 0.3 of Agmon (1982). [

Recent results of Donig (1991) imply that when PP = —A+¢ with ¢, == max(0,¢)€
M,,,(R") and ¢_e M(R"), P has only a finite number of eigenvalues below the least
point Z(P) of its essential spectrum if, and only if

K(S™ 1, R; P) = X(P)

for some R > 0. This settled an open question posed in Simon (1932).
As we see in the subsequent sections, applications to N-body operators require the
local analysis of Theorem 2.3.

3. Schrodinger operators of molecular-type
By Lemma 4.8 of Agmon (1982),
K(w;H) = A(H,),
where Hy=—=Ay+ XV

(l)i'_-wj

for w = (w',...,w")eS(X) and the sum being taken over all pairs ij for which
w; = w;. As we show below, this statement includes the main part of the classical

Phil. Trans. R. Soc. Lond. A (1992)
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N-body Schrédinger operators 119

HVZ Theorem of quantum mechanics (see Hunziker 1966; van Winter 1964;
Zhislin 1960).

Here, H, is an operator associated with one of the classical cluster decompositions
of particles. To illustrate that fact, first define

K;=ker (IT;) n S(X)
={weSX): 0 = o}

For each weS(X) define the equivalence relation B, on {1,...,N} by

iR, jei=j or wekKy.

If A,(w),...,4,,(w) are the equivalence classes of R, on {1,...,N}, then a,:=
{4,(),...,4,,(w)} is an m-cluster decomposition of N particles. Conversely, if
a={4,,...,4,} is a given m-cluster decomposition of N particles for m > 2, define

U= N Ky for m <N,
(th)ca

U,=8XN\UK,; for m=N,

@

(3.1)

where (ij) c a<,je A, ea for some k. Then

a=a, forevery wel)\ U K,

D da

W

Jonsequently, for m > 2 there is a mapping from S(X) onto the set of all m-cluster
decompositions of N particles. An element a, in the image of this mapping is called
a ‘local cluster’ in Sigal (1982). In the following by a ‘cluster decomposition’ we shall
mean an m-cluster decomposition with m > 2. We refer the reader to ch. 3 of Cycon
et al. (1987) and Reed & Simon (1979) for a more extensive discussion of the ideas
surrounding cluster decompositions.

Leta=1{4,4,,...,4,} be a cluster decomposition. It is customary to consider the

(m— 1)v-dimensional subspace

X, ={xeX:2'=2a' forall (ij) < a},

see Sigal (1982) or Sigalov & Sigal (1970). To find the orthogonal complement
of X, in X choose xe€X,,yeX and observe that for k;, an arbitrary element of
Ayi=1,...,m,
N ) )
e, ypx = X 2my(@, Y ) g
i=1

m
E Z Qmj(xki, yj)R"

i=1jeA;

Il

(¥, X 2m;y) g

JeA;

Il
T3

Hence, the orthogonal complement of X, in X is

Xe={reX:R{x)=0,0=1,...,m}

Phil. Trans. R. Soc. Lond. A (1992)
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120 W. D. Evans, R. T. Lewis and Y. Saito
for i
Rix)=— % mya!, My= ¥ m,, (3.2)
i jea; jed;

where Ré(x) is the centre of mass associated with the cluster 4;ea.
The next lemma illustrates the relation between the projections I7;;,1 <i <j <N,
and the subspaces X* and X,.

Lemma 3.1. Let X be the space x N, R” with the inner product
N ) )
{z,ypz= X 2my(x', y'),.
i1
Then for any given m-cluster decomposition a = {A,,.... A,} of N particles
(i) Xt ={zeXiat =" =2}
(ii) X, ® X+ = {wxeX:xeker(Il;) when (ij) < a}, and
(iii) X® = span{U Range(IT;)}.
For

(ij)ca

ng = span{ U Range(ﬂij)}, k=1,...,m,
i,jedy,

(iv) X=X @ - @X and X ={reX Ri(zx) =0}

By ‘ker’” and ‘span’ above we mean the kernel and linear span with span(() =
{0}. Note that X4 = {0} when 4 is a singleton. The proof of Lemma 3.1 is given in
the Appendix.

Given a cluster decomposition a, the intercluster interaction is defined by

=%V,
(ij)a

and the tnternal hamiltonian is given by

H(a)::H—]a—_‘_‘AIy"*‘ Z VL]

@)ca
We see that
H, = H(a, forall weSX)
and for any m-cluster decomposition a with m > 2

H(a)=H, forall wel\ U K.

Y (i) ¢a
The self-adjoint realization of H(a) in L*(X) will be denoted by H(a) also.

Proposition 3.2. Let a be an m-cluster decomposition of N particles. Then

Kw:H)=K(w:H(a)) = A(H(a)) = X(H(a)), weU\ U K.
(if) ta

Proof. The first equality follows from the fact implied by (2.1) (iii) that for (¢j) & a
V;—>0 as |x[>00 inacone I({w}1)
for & sufficiently small. If we U, then V;(x+tw) = V;(x) for all (4j) = a and ¢ > 0, and

Phil. Trans. B. Soc. Lond. A (1992)
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N-body Schridinger operators 121

it follows as in Lemma 4.6 of Agmon (1982) that A(H(a)) = 2(H(a)) = K(w:H(a)). If
m = N, then H(a) = — A, and the statement still holds.

The main part of the HVZ Theorem of quantum mechanics follows as a corollary
of Proposition 3.2.

Corollary 3.3. (i) K(w: H) assumes only a finite number of values on S(X). (ii)
2(H) = inf{K(w:H)'weK-.fm some (if), 1 <1 <j <N}
= inf{K(U,:H):#a > 2}
= inf {A(H(a)): #a > 2}.

Proof. Part (i) follows from Lemma 4.8 of Agmon (1982) which implies that
K(w:H) = A(H,) = A(H(a,)) for any weS(X). There are only a finite number of
the operators H(a,).

If

#(a,) =N then w¢ U K;
1<i<j<N
implying that H(a,) = —AX and A(H(a,)) = 0. Such points w form a dense sub-
set of S(X). Since K(w H) is lower semicontinuous (Lemma 2.2), it follows that
max {K(w, H):weS(X)} = 0. Therefore, K(w: H) must assume its minimum at points in
some K,;. The remainder of the proof follows from Proposition 3.2 and the fact that

K(U,:H) = inf K(w: H)

wel,

for any m-cluster a. ]

4. The finiteness and infiniteness of bound states

In the next two lemmas we discuss refinements 7}, associated with a cluster
decomposition a, of the matrix 7'y mentioned in §2. These new matrices are used to
change coordinates to clustered coordinates. An example of such coordinates is the
clustered Jacobi coordinates discussed on p. 79 of Reed & Simox: (1979). In the second
lemma we give a specific matrix 7}, to produce clustered coordinates differing from
the clustered Jacobi coordinates. Many other variations on this theme are possible.
Proofs are given in the Appendix.

Lemma4.1. Leta ={4,,...,A,,} be an m-cluster decomposition of N particles and set
M = 2N m;. Number the (lustens tn order that #(4,) > #(A]-) when © < j. Let m” be the
number of clusters having more than one element. There is an Nv x Nv matriz T, having
the following properties:

(a) T, is non-singular.

(b) For G =diag (2m1,,...,2my1,) the matriz G(a)="T,G T has the form

CGe 0 0
0 Og 0
I(a)= 0 0 (Yl;n, 0
0 0 - d, 0

[0 0 - 0 (1/2M)1

Phil. Trans. R. Soc. Lond. A (1992)
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122 W. D. Evans, R. T. Lewis and Y. Saito
Each G¢ is of dimension (n(t)—1)wx(n(@)—1)v for n(t)=#A4,), i=1,....m". The

submatriz G = diag ((, ..., G%,) is of dimension (N—m)v x (N—m)v. The submatrix G,
18 of dimension (m—1)y x (m—1)v.

(¢) If x = (21, ...,2N)e X then

]
1\"——m
U] =T
0
L 0
foryte R", I =1,...,N—m. Moreover, for x = (x',... ,:th)eXﬁ11
1
77(0 ) 7! ‘I
=Tz for pl)= : .
. nn(l%lJ
0

In general, the result is analogous for y(k), k= 1,....m, and x in subspaces X% _of X*.
(dy If . = (a',..., aNye X, then

gl
s

for&eR, i=1,....m—1.
(e) If w = (x',.... ") e X" then

Jor R =o' =+ =gV,

Lemma 4.2. For each m-cluster a there is a matriz T, ~ulisfying the properties of
Lemma 4.1 as well as the following

(@) In Lemma 4.1c each n' = a'—a! for some (ij) <a and 1=1,....N—m. For
k=1,....m, the components of (k) are equal to &' — 7 for some i, je A,.

(b) In Lemma 4.1d each

g = (M, /M) (Réx)—R%, (), l=1,...,m—1,

SJor M =2 m, and R, M, given by (3.2).
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N-body Schridinger operators 123
(¢) The (m—1)v x (m—1)v matriz
MM, +M,)1, M\ M,1, MM, 1,
_ 1 M, M, 1, M,M,+M NI, - MM, 1,
Ta T oM, MP : : :
‘Mm—lMllu Mm~1M2[u Mm—l(jl/[m-l +Mm)1u

In these new coordinates the Laplace-Beltrami operator in X is given by
Ag = divy (@) V).

For cach m-cluster decomposition a let Ay« and Ay be the Laplace-Beltrami
operators on the subspaces X? and X, respectively. Then Lemma 4.1 implies that

Aya=div, (G°V)), 5= ....9"™,0,...,0)e T, X* (4.1)
and

Ay =div (G, V), £=(0,...,0,&, ... 0)eT, X, (4.2)
Moreover, Ay splits into a tensor product

Aye@I+T® Ay,
on L*(X*%) ® L*(X,) ~ L*X), where [ is the identity operator on either X, or X“ in
accordance to its position. Define
= =A@ I+ X ca Vyy (4.3)

and Hy=1®(—Ayx)+1, (4.4)
where [, is the intercluster interaction for the cluster a.

We may view /1, and /1* as being (unitarily equivalent to) the operators associated
with the closures in L2(7] X) of the forms

Pd P Y] = f f (G Ve, V) + 1,0, 8) pP)dy Edyan, ¢, eCP(T,X)
T,X°JT,X,
and

o= [ |@vevms s nmeaeae syecian
T, X, T, X () ca
respectively, where dy.y=+/(G*)"'II;dy; and dy &=+/(G,) " 11;dg}; see the
discussion of ‘The restriction of Az to X’ in the Appendix for more details.
Henceforth, we simply write dy and d§ for dy.y and dy £ respectively. Then,
p=p.+p*and H=H,+H* (We make no notational distinction between unitarily
equivalent operators.)

Lemma 4.3. Let a be an m-cluster decomposition. Let H(a) be the internal hamiltonian.

For H* defined by (4.3)
A(H(a)) = A(H?), (4.5)

if m <N and A(H(a)) =0 i¢f m = N.

Since the proof of Lemma 4.3 follows in the same manner as Lemma 4.10 of Agmon
(1982), we do not repeat it here.
Now, we are prepared to state one of our main theorems.
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124 W. D. Evans, R. T'. Lewis and Y. Saito

Theorem 4.4. Let 4, given in Definition 2.1, be the disjoint union of sets U,, ae .o/,
Jfor some set o of cluster decompositions. Given § and R set

A= T ONT(U,)yy0, 2R).
If there exists positive numbers 0, € and R such that
(LH ,— (e/]al) Xa4,] B P2z =0 (4.6)
Sor all peCT (I ((U,)y R)) and each ae .ol , then o(H) N (— o0, 2(H)] is finite.
Proof. We may assume that ¢ has been chosen sufficiently small in order that the
(U)y.ae .o, are disjoint. If || 2, = 1, then for each ae.«/
([ — (6/|x|2) XAQJ ¢> Sb)L“(X) = (Ha¢= ¢)L2(X)
> A(HY)
= 2(H)
by (4.5), (4.6), and Proposition 3.2. Therefore,
K, R H) > 2(H).
It follows from the Definition 2.1, Lemma 2.2, and (2.2) that
K(AM, B H) < Z(H).

Hence, the condition required in Theorem 2.3 is met. O

Note that Theorem 4.4 does not require that the cluster decompositions ae€ .o/ be
2-cluster decompositions, contrary to the typical assumption for finiteness of bound
states. However, if @, and a, are distinct 2-cluster decompositions then U, and U,
are disjoint, meeting the requirement of the theorem. We look at a consequence of this
fact below.

Inequality (4.6) requires that for given § and ¢ the operator determined by

H,—(e/1al®) xa, on  CFUI((L)s 1)
has finite negative spectrum.

The conical region I'((U,); 1) compares with the support of the localizing function
J. used in the Deift-Agmon—Sigal partition of unity given in Definition 3.19 of (Cycon
et al. 1987). There {|x| > 1} N supp j, is contained in the set

{reX:|x'—a!|, = C'|x] whenever (ij) & a}
for a suitable constant C, and it is not hard to see that this is also the case for
I'((U),, 1) for all & small enough.

When . is not the disjoint union of sets U,, an analogue of Theorem 4.4 can be
proved, but we do not pursue that here. In reference to the results in §2 the reader
may notice that the condition (4.6) is equivalent to the requirement that

K((U)s B (H,— (e/12[*) X4,)) = 0.

To show that /{ has an infinite number of bound states, according to Theorem 2.3

it will suffice that we can find a function ¢pe CP(I (M, R)) such that

(H¢’ ¢)I,2(X) < 2(H) ||¢||%,2(X)

for every 8 >0 and every R > 0. Roughly speaking, this will require that the
inequality (4.6) with ¢ = 0 be reversed for some sequence (¢,,}.
Earlier results of this type have used techniques developed in the fundamental
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N-body Schrodinger operators 125

paper of Kato (1951) (see also Reed & Simon 1978, p. 89; Titchmarsh 1958). Here, we
use recent results in Agmon (1982) concerning the decay of eigenfunctions and a
consequence regarding the decay of the gradient of eigenfunctions. The proposition
and its corollary are stated for the general operator P introduced in §2, but it applies
to H and H* as well. The next proposition is a corollary of Theorem 4.9 of Agmon
(1982). It is a modification of Proposition 4.2 in Evans ef al. (19915).

Proposition 4.5. Assume (1.1) (i)—(iv). Let yr be an eigenfunction of P with eigenvalue
< Z(Py=info,(P) and let A(A7') be the minimum eigenvalue of the matrix

A7 = (ay).
(i) For cy= 1/ [(E(P) =) A,(A )]
J [t (x)[? el da < 00, 4.7)
Rﬂ.
(i) If (1.1) (i) (iii) hold and
Qil}}e*Mloc(Yi)7 7’ = 1""?l? (48)
then
f [Vifr(z)]? e da < o0. (4.9)
R"L

Recall that 7 is the form associated with the operator P in L*(R"™).

Corollary 4.6. Assume (1.1)(1)—(iii) and (4.8). Let P, i, u, and c, be given as in
Proposition 4.5 with ||| 2zn = 1. Then there is a sequence {¢,} = CF(R") having the
Sollowing properties for each positive integer k:

(i) “¢/c”L2(R”) =1;
(1) supp (¢,) < {xre R":|x| < 2k}; (4.10)
(i) e ) < i | eV

’ || >k

Sfor some constant C' > 0 independent of k.

The proofs of Proposition 4.5 and Corollary 4.6 can be found in the Appendix. The
next theorem is an application of these two results. Although it is quite technical, it
does sketch a general method of proving the infiniteness of bound states for H. Below
we use it to obtain specific criteria in the special case in which U, for a 2-cluster
decomposition a is an isolated subset of the minimizing set .Z.

Theorem 4.7. Assume that
vy €M (R, 1<i<j<N, (4.11)
and for some m-cluster decomposition a assume that
Ucd and

(4.12)
A(H" = X(H) is an isolated eigenvalue of H*.
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126 W.D. Evans, R. T. Lewis and Y. Saito

Let {¢%} = C2(RN"™") be a sequence given by Corollary 4.6 associated with A(H). For
each k = 1 define

no=[ | Lesigmk

If for some € > 0 there is a sequence {yr,(§)} = CF(R™ V") with

(i) supp (¢,) < R™ DN\ B(0; k%) for some fixed g > 1,

(ll) “?ﬁk“]‘z(R(mﬂ)v) =1, and (413)
) €

(i) | o UG e+ Te@ P+ <0,

then H has an infinite number of bound states.

Proof. By Corollary 4.6 we may assume that the sequence {¢%} = CP(RY~™") has
the following properties:

(i) “¢%1|L2(R(“"m)") =1
(ii) supp (¢%) < {xe RY=™: 2| < 2k}; and (4.14)
(i) GV, 63,9, 60+ 3 Vyn)lgal |dy < S(H) +—"

RIN-mw (ij) ca ke

for any € > 0 and all £ sufficiently large. Define
Py, €) = gr(n) Yi(€), for (.£00eTX and k> 1.
Then each @, Cy (T, X). Also, note that
Supp @, < {7 £, 0) €T, X: [yl gov-me < 2k and (&g > £,
Next, we show that for positive constants C; > 0,¢,, and 0, == C /kT k> 1,
T3 (supp @) < I((T]),,, ¢, k7).

Let xeT" (supp @;). Then, T, x = (3,£,0)' esupp @, and, according to Lemma 4.1,
there exist x,€ X, and 2*€ X such that

G 0 U
711;1:":(0), Te,=| &), and Tax=[§
0 0 0

with = 2@ x,€X. Then there are positive constants ¢, and ¢, such that
(i) 2] < ey kb and (i) || = ¢, k9. Set €y = 2¢,/c,. Since |z, |3 2, € U,, then

dist (/2] : ) < lo/laly — 2,/ 12, x| x
< (/1o o L) o Ly 2+ (o0 Ly — [l ) 2] 5
< (1/]aly) (1] + (2l x — |2a] )
< 20y /]l
<Oy /kT?
= 0y,

which is what we wanted to show.
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N-body Schridinger operators 127

Hence, for all k sufficiently large

PLP] = P Pp]+ pal Py

:wa—m),,[(GaV’lgs;’V‘r/ AREEDY Vij(77)|¢%|2Jd77

(i) ca
+LWWW%%¢m%¢w+m@wmwg
< 2(H).

Therefore, H has an infinite number of bound states. O

We conjecture that Vi (§) in Theorem 4.7 can be replaced by

n@=f L. )yl dy
RN —my»

for iy, being the ground state of H® In that case the problem would be reduced
essentially to showing that
—AXH+ Va(é)

has an infinite negative spectrum.

(@) Bounds for H, when a is a 2-cluster decomposition

A common assumption for criteria for the finiteness of bound states of H is that
U, = M only for 2-cluster decompositions a (cf. Sigal 1982). In the absence of this
condition it can be shown that some 3-body operators have an infinite number of
bound states even if the v;; have compact support. This phenomenon is known as the
‘Efimov effect’ (see Efimov 1970, 1971) and Cycon et al. (1987).

When a is a 2-cluster decomposition, we will be able to use Lemma 4.8 below to
approximate I, as follows:

Va(l€l:0) < L,(9.8) < Va(lEl: ), T, (0. £.0) el (U 1) (4.15)

for 0 sufficiently small and functions V, and V} given below. Using these
approximations to the intercluster interaction we identify operators, which are lower
and upper bounds for H,,

Hy=—Ay +V, and Hy=—A, +V; (4.16)

a it
with domains in L*(X,).
A basic hypothesis, which holds for N-body operators, is as follows:

Hypothesis . For a given cluster decomposition a and each (ij) & a, asswme that there
is a function vy;: (0, 00)—> R such that

(i) [/;](‘L) = 7f'ij(xi_xj> = 7)2j(|xi”xj FOF
(ii) each v, is of one sign on (0, 00);
(iii) |vy] is non-increasing on (0, co).
Lemma 4.8. Assume that A holds for a 2-cluster decomposition a :={A,, A,}. Let
N
M= m; and M;= % m,.
i=1 led;
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128 W.D. Evans, R. T. Lewts and Y. Saitd

Then for all & sufficiently small there is a constant C' > 0 depending only upon m, ...,
my such that (4.15) holds with

(M (M
I I vﬁ((m—oa)lgl% > vﬁ((ﬂ—lwa)lgt),

(i) ¢ a:vy;<0} {(i9) da: vy >0}

Va(lEl; 0) =V (IE]; —9).

If a={4,,4,}, it follows from Lemma 4.2b that |£| is a constant multiple of the
distance between the centres of mass of the clusters of particles corresponding to 4,

and A4,. Note that 3 3
o ore T V(€58 < Vi 0,),
VEE):8,) = VEED: ).

for each £e R". The proof of Lemma 4.8 depends upon the following lemma. The
proofs are given in the Appendix.

(4.17)

m>%>o={

Lemma 4.9. For an m-cluster a let T, be given by Lemma 4.1 and let n=
o pNT™E and £= (&, ..., ™) as given in parts (¢) and (d) of Lemma 4.1. If

7
(é)e{ﬂ%rxeﬂ(%)a,l)}
0

and 0 is sufficiently small, then
’ﬂlR(N~m)u < 26|g|R(Tﬂ—1)u.

For each 2-cluster decomposition a define H} and H, according to (4.16) associated
with the closure of the forms

pB 1= | G50+ 77 0106 pyeCiR)

in L*(R"). According to Lemma 4.2¢ the matrix G, = (M,/2M,M)I,. Tt follows
from (2.1) (iii) that V-0 as |£| ~o00. Using this fact it can be shown that X(H;) =
2(HY) =0.

The next corollary to Theorem 4.4 shows that in the case of N-body operators (4.6)
is satisfied for a being a 2-cluster decomposition if an associated operator in L*(R")
has finite negative spectrum (see Donig 1991). This is the classical problem of the
existence of positive solutions studied in the oscillation theory of partial differential
equations.

Recall that B(R) denotes the ball centred at the origin and with radius R.

Corollary 4.10. Assume that

M= U,

#(a@)=2

If A holds for each a for which U, M, J is sufficiently small in order that (4.15) holds,
and for some R > 0

€

([r:-g|e@pe) >0 secsrnm, (4.18)
€] L*(R")

then H has no more than a finite number of bound states.
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Proof. Since only 2-cluster decompositions are being considered, then .# must be
the disjoint union of sets U, as required by Theorem 4.4. If 4 is sufficiently small and
peCP(I'((U,), R) for U, = M then the left-hand side of inequality (4.6) is equal to

o= Sorars [ [ (60,9090 00080~k agay
;0 aX ﬂXﬂ
according to (4.18). O

For ¢ sufficiently small (4.18) obviously holds if
Vi (€l;0)—¢/IE* = 0

for all R sufficiently large and all ¢ sufficiently small. This is the way one can show
that an atom with N electrons and an infinitely heavy nucleus of charge Z < N—1 has
at most a finite number of bound states. Another more general criterion is given by
the next corollary. Below 2, denotes the volume of the unit ball in R”.

Corollary 4.11. Assume that
M= U T,

#(a)=2

H holds for each a for which U, = M , and & is sufficiently small in order that (4.15) holds.
If for each of these 2-cluster decompositions a = {4,,A4,}

(v—=2) M,

lim sup - f (V=(al; ). da < ,
b 1<)z|<1 WZM

R>0 IZR
then H has no more than a finite number of bound states.

Corollary 4.11 is a modification of Example 5 of Evans & Lewis (1990). It is an
adaptation of a classical one-dimensional result of Hille (1948). In contrast, we give
a corollary to Theorem 4.7.

Corollary 4.12. Assume (4.11) and that (4.12) holds for some 2-cluster decomposition
a. Suppose that VEi(|&];8) < O for some 8 and all || sufficiently large. If

Q,M,(8+181)°
8M,M(2—v—p)’

lim sup 1>-+-# f P V() 0) dE < —
20§ <31

R>0 2R
for some fe(—v,2—v), then H has an infinite number of bound states.

The proof of Corollary 4.12 depends upon the next lemma.

Lemma 4.13. Let p, be a positive constant and let p, € L1 (1, 00) with py(t) < 0 for all
t sufficiently large. For n = 3 define

Ly =—(pyt" 'y’ ) +t" ' py(t)y, yeC*0,0),

where " = d/dt. Assume that for some a < 1

8l 8+|a+1—nl)?
lim su ll‘“J oo (t) dt < —Pol . 4.19
i Sl A Hl—a) (4.19)
Phil. Trans. R. Soc. Lond. A (1992)
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Then for any constant q = 1 there is a sequence {$,} = CP(0,00) and € > 0 such that

supp (@) <= [k?, 0),

(L, Pr) 1200, ey < — LTV, J (4.20)
Proof. Choose f(t)e C*(— 0, o) for which
<0,
mo={ 150
B(t)e[0,1], and £'(¢)€[0,2] for all £. For each k > 1 define
BE—kD) k7, te[k?, 2k7),
P
L(6k?—1)/3k), te[3k9,6k7),
0, t [k, 6k,].
Note that
B10] < Yot =] +8) 1oz
for all ¢. Therefore,
f:) po g de < 2B z([‘ff ;)_ ety 4.21)

Since p, (t) < 0 for ¢ large, then by (4.19) with [ == k? and (4.21), there exists ¢ > 0 such
that

357 2
Po(8+la+1—nl)?
N < o q(a—1)
(L, Di) 1200, o0 qut py(t)di+ 41 —a) k
< —eht@D
for k large enough. The conclusion now follows. O

A consequence of Lemma 4.13 is the fact that all solutions of Ly =0 have
unbounded zeros on [1, 00), i.e. all solutions are oscillatory at oc.

Proof of Corollary 4.12. In Theorem 4.7 considered for this case (m = 2) we have
that
Ve(§) S VZ(E;0), k=1

Set a:=f+v—1 and
pi(t)=V,(t;0).

Then (4.19) holds. Recall that ¢, = (M, /2M,M)/I, fora = {4,,4,}. Set py==M,/2M, M
and n = v. Now, the hypothesis of Lemma 4.13 holds. To complete the proof we
need only use (4.20) to construct the sequence required by (4.13), i.e. set

i) = PullE]), k=1

Now,

[ te Vot @< a, [ o+ pigoan

< —eQ, k1Fr
v
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and, for fe(—v,2—v) and some constant C' > 0 independent of £k,
”':blc”L?(R“) 19 Ja(B+v)
Hence " ’ o 1
Hf Lk k )+ <—e<—————)
( el 1l k2 ket
<0

for k large. O

We conclude this section with another corollary to Theorem 4.4, which is
concerned with N-body short-range systems. The proof of this result was first given
by Yafaev (1972a, 1976). The reader may note that Corollary 4.11 also applies to V-
body short-range systems.

Corollary 4.14. Suppose that
M U U,
#(a)=2
If of is the set of all 2-cluster decompositions for which U, = M, suppose that
(vy)_eL"*(R"), (i) taed.

Then H has no more than a finite number of bound states.

Proof. We need to show that (4.6) holds (after the change of variable (5, £,0) = 7, ).
It follows from Lemma 4.9 that ||y > cR for some constant ¢ when (7,£,0) = T X
and xelI'((U);,R). If (¢j) € ae o, then by Holder’s inequality and the Sobolev
Imbedding Theorem

2/v =2)/v
f (00, ©) I dEdy < f [(J |(vi,->_|”/2dg) (f |¢|2“/<v-2>d§) ]dn
T,X T,X° |E|>cR [€|=cR
2/v
<0J [(f |(vi,~>_|"/2d§) f |Vg¢|2dg]dn
T, X" [El=cR [E|>cR

for some constant C' and all ¢ e CF(T(I"((U,);, R)). Hence, we may choose R large
enough in order that

J (vif(%ﬁ))_lqﬁlzdﬁdﬂéef (G Vep. Vep)dEdy, ¢eCF(TUI(U,) R)).
T,X T,X

a

By Hardy’s inequality we also have that

(v—2)2M,
8M, M T, X |77|2+|§|2

’ J (@, V6.V, p)dEdy > RdEdy, $eCH(T,X).
T,X

Inequality (4.6) now follows for all ¢ sufficiently small. O

5. An application to diatomic systems

In this section we assume that our system is a diatomic molecule consisting of N
electrons and two nuclei. The results can easily be extended to the polyatomic case
with assumptions similar to those which we make here. For the sake of simplicity, we

Phil. Trans. R. Soc. Lond. A (1992)
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132 W. D. Evans, R. T. Lewis and Y. Saito

do not restrict our operator to the symmetry subspace required by the Pauli
exclusion principle as should be the case for a complete consideration of a diatomic
molecule.

The electrons have mass m and coordinates x%,7 = 1,..., N. The two nuclei have co-
ordinates R, R,, masses Mr,, Mr,, and charges Zl, Z,, respectlvely Therefore, letting
= (R,R,y2",....,2Y) '€ X the hamiltonian before the removal of the centre of
mass is given by

1 |
= — Z — X —Ay
i=1 2MR,. f Zom
N Z Z, 1 Z 7
—z(.l i )+ s (5.1)
i\ =Ry | —Rzl 1<z<]<N|x '—xj| |R, — R,

As discussed in §2 the motion of centre of mass can be removed by changing variables
using a matrix T and then restricting A to X to obtain H.

Recent work of Ruskai (1989, 1990, 1991) and Solovej (1990) study the stability
of such systems. However, the work of Solovej studies diatomic systems in the
Born-Oppenheimer approximation and does not compare directly with the results
here. The work of Ruskai does not require this restriction. Earlier fundamental work
of Lieb (1984 a, b) considers this problem for atoms and molecules in which the nuclei
are assumed to be fixed.

We are interested in finding criteria concerning the relation between N and Z,, Z,,
which insure either the finiteness or the infiniteness of bound states of H particularly
with respect to the breakup of the system into two atomic subsystems. Consequently,
we assume that the least point of the essential spectrum X(H) is determined only by
2-cluster decompositions which separate the nuclei, i.e.

D
M= U U, where a;={A4], A%} (5.2)
J=1
For i=1,2, the ith nucleus is assumed to be in the cluster 4], j=1,...,p. (We
continue to write /€ A} meaning that the electron in position 2! corresponds to the
cluster A].) As a consequence of the HVZ Theorem (Hunziker 1966; van Winter
1964 ; Zhislin 1960), (5.2) implies that the least point of the spectrum of each H% is
an isolated eigenvalue.

Theorem 5.1. Let H be given by (5.1) and let H be the resulting operator after the
removal of the motion of the centre of mass. Assume (5.2) and let n) = (#(AJ)—1), i.e. the
number of electrons associated with the ith nucleus in cluster AL, j = 1,...,pandi=1,2.

If
(Zy—w) (Zy—nh) >0, for j=1,...,p, (5.3)

then H has mo more than a finite number of bound states. Conversely, if H has no more
than a finite number of bound states, then

(Zy—n}) (Zy—nd) =0 for j=1,...,p. (5.4)

Proof. The proof follows as a corollary of Corollaries 4.11 and 4.12. Hypothesis #
holds for this system. For each 2-cluster decomposition a;,j = 1,... ,p, in (5.2) the
matrix fl},j given in Lemmas 4.1 and 4.2 maps x+— (3(1),7(2),&,0)!,xeX, where the
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components of #(i), i = 1,2, are R;,—2' for some € A} according to the proof of
Lemmas 4.1 and 4.2 given in the Appendix. Here,

2
= (M,/M) (RY(x)— Ry (x)), for M, =My +nim and M=mN+3 Mg,
i=1
where each R%(x) is the centre of mass of the cluster 4] defined in (3.2).
Let a = a; for some j=1,...,p which will be suppressed for our subsequent
discussion. By Lemma 4.8 for all positive ¢ sufficiently small we can bound the
intercluster interaction as given in (4.15) with

V(€)= V(1€ 9)

2,2, . t
" QLM+ OE s, O/, + CO)IE

-3 Zl -3 Z2
1eA2(M/M1_O§)|§| 1eA1(M/M1—Ca)|§|

1

_ M—CM, 3
(M/M1—03)|€|

(amm i

—(nyZy+n, Zz))
and Vi(lgl) = V (|&]; —d) where C' is a positive constant depending only upon M Ry
R , and m. If (5.3) holds then V,(|£]) = O for all ¢ sufficiently small. Since this can
be done for each 2-cluster aj= 1 .., p, then Corollary 4.11 implies that H has no
more than a finite number of bound states.
If (5.4) does not hold for some j, then

Va(l&) < —e/lé|
for all ¢ sufficiently small and some € = ¢(d). By choosing f€[1—»,2—v) in Corollary
4.12, we can now conclude that H has an infinite number of bound states. O

Vugal’ter & Zhislin (1977) (Theorems 2.5 and 2.6) have shown that the number of
bound states of H is finite if one of the 2-clusters 47 has a neutral subsystem, i.e.
inequality (5.3) is an equality (see also Yafaev 1976; Vugal’ter & Zhislin 1984).

The proof that (5.4) is a necessary condition for finiteness of the bound states of
H in the case of 2-cluster breakups also follows from Theorem 1 of Simon (1970). The
finiteness criterion of Theorem 5.1 can be shown to follow from Theorem 3.23 in
Cycon et al. (1987) with a little more work than is required here. (The relationship
given by(4.15) is quite helpful in applying Theorem 3.23 in (Cycon et al. 1987).)

For homonuclear diatomic systems with Z = Z, = Z, we have by Theorem 5.1 that

Z>N=o0(H) N (—o00,2(H)] is finite

provided that (5.2) holds, i.e. provided that the least point of the spectrum of every
2-cluster subsystem is an isolated eigenvalue. Ruskai (1989) has shown that for N
sufficiently large

Z>2N=o(H) N (—o0,2(H)]=I.

It is interesting to compare this with the case of an atomic system P(Z:N) with N
electrons and a nucleus of charge Z. Results of Yafaev (19720, 1976) and Zhislin
(1960, 1969, 1971) show that for 2-cluster breakups

Z<N—1<oP(Z:N)) N (—o0,2(P(Z:N))] is finite
Phil. Trans. R. Soc. Lond. A (1992)
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while Lieb (1984 a, b) has shown that
Z <I¥N—1)=0(P(Z:N)) n (=00, X(P(Z:N))] = .

Hence, the results are also related by a factor of 2.
To treat the case in which Z, < N < Z, for asymmetric diatomic molecules Ruskai
(1991) has shown that for every fixed pair of values Z, and N, there exists a constant

7% > 0 for which Uy > 75 = o(H) 0 (—o0, S(H)] = &,
A key ingredient in the proof is the fact that when Z, is sufficiently large
U, <M for a,= {4,,A,}

when #(4,) = N+ 1 and #(4,) = 1, i.e. all electrons are associated with the nucleus of
greater charge implying that n, = N and n, = 0. Note that (5.3) is satisfied in this
case. In contrast (5.4) in Theorem 5.1 indicates that if (5.2) holds and a, = a, for some
jef{l,...,p} then

0<Z,<Z,<N=o(H) N (—o0,X(H)] is infinite.
Also, if it were the case that for some je{1,...,p} given by (5.2)
0<Z,<n<ni<Z, then o(H)Nn (—oo,X(H)] is infinite.

However, it appears that (5.4) should be taken more as an indication of the types of
2-cluster decompositions which constitute (5.2) than as a statement about the
infiniteness of bound states of H.

Appendix
(@) The restriction of Ag to X
If
~ N .
X:= {xeX: > mxt = O},
i=1
then Xt ={zeX:a' == =2V},
a v-dimensional subspace of X. To understand the restriction of A to X it helps to
change coordinates. We want a real non-singular matrix 7'= (¢;;1,), i,j = 1,..., N,
such that
Fxl T y]
T = ‘y“:'"l , xeX
Eas 0
2] 0
and T = 0 , xeX*t.
_.%'N_ yN

This requires the sum of the elements in the first N—1 rows to be 0, i.e. XN, 1, = 0,
i=1,...,N—1. For the last row choose ty; =m;/M, j=1,...,N.
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Now, look at the transformation of Az under 7. For (= diag(2m,1,,...,2my1)

A

/

A
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A
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TaNsactions | HE ROVAL

SOCIETY

OF

and ¢,y e 0 (X)
ﬁ—m&iﬁdfw f (G, 4.V, ) g
X X

_ f (TG, .5, ) vy,

X

where d gz = det (%) da!...da", d ¢ y = det (G%) det (T1) dy* ... dy". Note the form of

e (G O
TGW‘(O <1/2M>I.,)’

where Gy is an (N—1)v X (N—1)v non-singular, positive definite matrix. Clearly,

(det T2 det (G71) = (2M)™ det (Gy),
whence
(det (64) det (7)) = (2M)" det (G3)
indicating that
dgy = +/det (GF)dy...dy"N 1 (2M)"2 dy™
=dyndyR

f
o B, 0)= (5", ...,y 0) e X;

(0,R)i=(0,...,0,5™) e X*;
dy n=1/det (G dy*...dyN1;

1

and dyr Re= (2M)2dy™.
For ¢,y e Cy(X)

| ~dsopaze=| @0V e

~ [ @6 1,89, ey

X
[ | O P dendii R
X X
1
vair] | TebVaedinae
=J f “diVV(GXVuﬁﬁ)JdXﬂdX*R
x*tJx

1 _
+ ——A dyrtRd
fxfxl oM rPPdyx x7

indicating that
Ay =div, (G4 V)
Phil. Trans. R. Soc. Lond. A (1992)
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and that Ag splits into a tensor product:
Ag = Ay @I 2gy+ 12 -0, @ (1/2M) Ay,
If 9, +R, = Tx and 3, + R, = Ty for z, yeX, ., 7,€X, and R, R, € X", then it is
not hard to show that
,y) 5 = (G 9,1, po-n+2M(R R, gr.

Jonsequently, for x, ye X

e,y x = (G5 14, .

To illustrate the transformation above in one set of coordinates, we recall the
classical Jacobi transformation J:x+§,xe x ¥, R", defined by

J
gj:zxj+1—1-‘;—zmi$i, j=1,...,N“‘1,
ji=1
Wlth 1 N
gN — ___2 mixi
Mni=1

and M; =XJ_ym;j=1,....N (see Reed & Simon 1979). Then, £V =0 in X and
N-1 1
Ax= X g, A Tor = misy +A

Proof of Lemma 3.1. Parts (i) and (ii) follow directly from the definitions of
X, X+, X,, and the IT;s. ~

Let Rf be given by (3.2). To show (iii), first note that each I1;;: X - X. Moreover,
if 4, je 4, for some k, then Ry (Range (I1;)) = {0} by the definition of II;. In fact,
R} (Range (I1;;)) = {0} when [ # k since the 4,s are disjoint and all components of
ve Range (I1;;) are zero except for the ith and jth components. Since the R¢s are
linear operators, then

span { U Range (HU)} < Xe.
(i) ca
The definitions of the I1;s and the disjointness of the A;s give the fact that
X5 @..0X5 = span{ U Range (Hij)}.
(i) =a

Viewing X“ as the set of solutions to a system of m equations in N unknowns, it is
clear that the dimension of X% is (N—m)v. The definition of the IT,s shows that the

dimension of X4 is (#(4,)—1)v for k = 1,...,m. Hence,
dim (X4 ©...@ XY )= X (#(4d,)—1)»
k=1
= (N—m)v
finishing the proof of (iii) and (iv). O

Proof of Lemmas 4.1 and 4.2. We prove these lemmas by constructing such a
matrix. It will be obvious from our construction that the matrix which we give is not
unique.
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N-body Schrodinger operators 137

Example: clustered coordinates. Given an m-cluster a ={4,,...,4,,}, it is
convenient to enumerate the A,s defining a in order that #(4,) = #(4,) > ... =
#(4,,). Furthermore, let the elements of each 4, ea be arranged in ascending order,
sa '
Y A, ={ak ... dk ) with of <. <ak,, and n(k)=#(4,). (A1)

Define the first N—m rows of a »N x vN block matrix 7, consisting of v x v blocks
as follows.

Row 1 of 7, has I, in the position a]; —I, in position a;; and zeros elsewhere.
Row 2 of 7, has [, in the position aj; —/, in position aj; and zeros elsewhere....

Row n(1)—1 of T, has I, in the position al; —I, in the position al,; and zeros
elsewhere.

Row n(1) of T, has I, in the position a?; —1I, in position a2; and zeros elsewhere ...

This process is continued until the elements of 4, are exhausted...

This process is continued for each 4, with #(4,) > 2.

In this manner we construct the first (N—m)v linearly independent rows of T
corresponding to all 4, ea with two or more elements. The last m rows of 7, consist
of v x v blocks given as follows.

Row N—m+1 has (m,/M,)I, in position k=aled,,i=1,...,n(1) and zeros
elsewhere.
Row N has (m,/M,,)1, in position k =a*e€d,,, i =1,...,n(m) and zeros elsewhere.

Recall that M, = %, 4 m; When multiplied by weX, these rows will give the
location of the centres of mass of the different clusters. However, the centre of mass
of the entire system has not been separated, which is a requirement for the matrix
ij

Notice that the last m rows of 7}, are mutually orthogonal. Analogous to part (b),
we have that -

FG? O e O
0o a5 - 0
T,G'T,=10 0 Ge 0
0 0 Gl 0
0 0 Gm |
partly because the last m rows of T, 2 are orthogonal to its first N—m rows. If we

perform elementary row operations on these last m rows, say ET, G~ for some
elementary matrix &, each of the last m rows of the resulting matrix ET G will still
be a linear combination of the original m rows maintaining this orthogonallty

property.
Define elementary matrices E,,i =1, 2, 3, 4, as follows:
Lin—my» 0 0 0-
0 (AMI/AM)IV te 0 0
B = : : : e
: I m1/M)1
0 0 ‘oo e ]

Phil. Trans. R. Soc. Lond. A (1992)
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138 W.D. Evans, R. T. Lewis and Y. Saito
'I(N_m),) 0o - 0 0
O [V 0 _ﬁl(Mm/M)IV
B, = : N : :
: : I, —=pn M, /M),
where the ;¢ =1,...,m—1 are to be determined below,
I(N,n/[),, 0 0 0
0 I, 0 0
E,= : ’ : :
: : 1,, 0
0 0 e (M, /M) (LHE B,
d i ,
an Iy O 0 0 0
0 [, - 0 0
E4 = : .
: : 1‘, 0

Let H=FK, B, E,. Finally, we define
T, =BT,
Notice that for any choice of the g;s
ROWN(TL) = ((Wll/M) [7/7 e (WLN/]W) [u)
corresponding to the location of the centre of mass of the entire system. Forj =1, ...,
m—1, Rowy ., (T,) has (m, /M) 1, in column k = aje A;,i = 1,.... n(j); — f;(m,/M) 1,
in column k=af"€A,,, i =1,...,n(m); and zeros elsewhere. By defining
Bi=M;,/M,,, j=1... m—1.

the first m— 1 elements of the last row of 7, ("' 7% are given by

| | m 2 m 2
R , (THYG (R (T)G?) = A R—— Tk
(OWaom s tha) G5 (o (1) 679 kii(v’(zm,‘,w) A UE,,,(v/@m,‘,)M)

=0,
J=1,....,m—1, which is required by part (b). Then, fori,j=1,...,m—1,
(Go)y = (Rowy i (1) G4 (Row (1) 6F)

[(L/2M*) M (M, +M,,)/M,,. for i=j

/22y /M, for i+,
Therefore, the matrix
MM, +M,)1, M M,I, MM, 1,
o 1 MM, I, M,M,+M, NI, - MM, 1,
¢ 2M,, M? : : :
M, M, M, M,I, o My, (M, M),
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N-body Schridinger operators 139
Finally, we have for any « = (¢!,...,2¥)eX
| a0 — g |
xa}_xait(l)

m’ m’
xt — %

x“;n —-xamm’)

(M, /M) (Bi(x) — B3, (x))

(M, /M) (BT, () = BT, ()

m—1

(1/M)yZN  m,;

=1

The conclusions of Lemmas 4.1 and 4.2 follow from the construction above and
from Lemma 3.1. |

Proof of Proposition 4.5. Part (i) follows directly from Theorem 4.9 of Agmon (1982)
by setting ¢ = § and noting that p(x) > 2¢,|x|.

From (1.1) (ii) and (4.8) we can conclude that q e M(R"). Therefore by Lemma 0.3
of Agmon (1982), for every e > 0 there is a positive constant C, such that

f lgllgl* da < 6J IV¢|2dx+Cef 1" da (A2)
R" R?l Rn

for all p e CF(R"™). Recall that the sesquilinear form 7 giving rise to P is the closure,
7, of

g.v1= |

R

1AV, )+ b ] da

on CP(R™) x CP(R™). Since UP(R™) is dense in the domain Z(7) of 7 we can conclude
from (A 2) that i € H*(R") and |g|* 1y € L*(R"); in fact (A 2) insures that the 7-norm is
equivalent to the H'(R")-norm on CP(R") and hence, Z(7) = H'(R"). Moreover, there
is a sequence {¢,,} = CF(R") such that
¢m e W’
$m—>Y, in HY(R"), (A3)
gl ¢ — gty in LA(R"),

as m->00. (The first condition in (A 3) requires 7-convergence defined on p. 313 of
Kato (1984).) Set

)= () = e,
From (i) we have iy e L*(R™).
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For each positive integer k& choose o, € CF(R") with

(1 for |« <k,

o () =
o [0 for |x| = 2k,

d
o (@), Vo) < 1 weR™. (A 4)

Jonsequently, for {¢,} = C3(R") given in (A 3)

Rﬂ

Hpmaiatal = | AV Votppades | atoiaiyip,lt ds

=141, (A5)

Let A,(4)=minimum eigenvalue of A and A,(4):=maximum eigenvalue of 4.
Let B(k)={xe R":|x| < k}. Now,

I = f (02 (AT V) + 20y 1o AV, Vorg) +0 G (A, Vi)
Rn

from which we obtain the inequality

|V¢m|2dx+j Ul dx} (A 6)

B(2k)

L) [ atn Vg [

R" B(2k)
for some constant ¢; > 0 depending on A,(4) and ¢,. By (A 2) for any ¢ > 0 there
exists a constant c(e) > 0 such that

1 <e J IV (o 7 b )2 () f Dl dae
Rﬂ

B(2k)

Therefore, we have for any ¢ > 0

>~ f o [V pyf? dar— ' (c) f 716 2 dav (A7)
R" B(2k)
Here the constant ¢’(¢) > 0 depends only on ¢ and c,.
It follows from (A 5), (A 6), and (A7) that for any ¢ > 0 there are positive
constants ' = C(e, ¢y, A, (4)) and ¢; = ¢,(A,(4), ¢,) such that

TP i 1P ] = (/\1(A)~€)J aiangmezdx—clJ
R"

B(2k)

Vgltde—C f 7l dar
B(2k)
(A8)

Letting m —o0 in (A 8) it follows from (A 3) and Theorem VI-1.17 of Kato (1984)
that
(A (4) ~€)j

R

Vpkdeeo [ pipras

B(2k)

n OL% 7] |V1//|2 dil’,' < IU«(I//, a’lzc nI//.)Lz(Rﬂ) + C1 j

B(2k)

for any k. Therefore for ¢ sufficiently small

e [ gvpras <o [ wgrasecn [ opipras
B(k) B(2k) B(2k)
The proof of (ii) follows by letting &£->00 and using part (i). O
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N-body Schridinger operators 141
Proof of Corollary 4.6. Let f = f(r)e C*[0, c0) satisfy
(1 for rel0,1],

(r) =
g 10 for r>=3,
and f(r)€|0, 1] for all r. Define

ap(2) = fi(lal/k), xeR",
for positive integers k& > 1. Choose an integer K, large enough to insure that
= llay |l =4 forall k=K,
Therefore, for all k > K the sequence

Y=oy U/ oy ¢’|L2(Rn)

is well defined and has the following properties:

”'ﬁ/e”LZ(R") =1,
Y,e H'(R"), and (A9)

supp (¥,) = {xe R™: || < 3k}

Recall that for real numbers a” the matrix 4 = (a¥) is symmetric and positive
definite. We have that

AV (@) = et A3 (o (@) Vi (@) + @)k B/ (2l k) e/ lal), & > K,
implying that there is a constant ¢ independent of k£ such that

O/
L wrwpen a
k<|z|<3k/2

(A 10)

AV, Vi) egny < e (Ao, Vifr, o, Vw)LZ(R") +

since B'(r) vanishes for r¢(1,3). Therefore,

. 1 —— it
Wl < o | 14Vp.a3 V) 4o yat flae+

kJR

(I ()2 + [Vip (2)]?) .

k<|z|<3k/2
. (A 11)
Since

o Vi = V(i) =y V()
then for || = max{(4£,§): = 1}

e 2(AVyr, o V) 2 gny < (AVir, V(ai/cq) V) L2 rm

2

o mmmy s
k<|z|<3k/2

< (AVy, V(ai/c}) w)LZ(R")

o
7 (1 @)+ Vi (2)]?) da,

k k<|z|<3k/2

+14|

+
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where we may assume that (” is the same as given in (A 10). Substituting this
inequality into (A 11) we obtain

M <G/ | v
k<|z]<3k/2

20"
<UDVt | R V@ da
€ Jk<ini<sr/2

’

< ﬂ+3€—k—f e (@) + Vi (@) ) dar
keto 2>k

To conclude the proof we use the fact that C(R") is dense in the domain 2(7). This
implies that for each i, there is a sequence {#¥};°, = C(R™) converging to i, in
L*(R") for which 7(0f]>7[y),] as [->00. Since ||/, [ 2gny = 1, then [|0F] ogny—1 as
l>0c0. Since supp (¥,,) = {xe R":|z| < 2k}, then we may choose the 6%s with support in
{xe R":|x| < 2k}. If we normalize the 0%s in L?*(R"), then

(67 /107 1= 71yl < [T10F 1= 71 I+ T [OF 1L/ 10F [ — 1] >0 as I—>c0.
Now for each k£ > K, choose ¢, = 607 /||0} || for [, chosen sufficiently large in order that

el =71l < = J el |y ()2 + |Vifr(2)]?) da.
|| =k

ke etk
Hence, the sequence {¢,} satisfies the requirements of the conclusion with € = 3(".
O

Proof of Lemma 4.8. We first need a lemma. Let 4, be the cluster containing 1.
The inner products (-,") in the next lemma are euclidean inner products of
appropriate dimension.

Lemma Al. If (ij) ¢ a=1{4,,...,4,,}, then for ic A, and jeA,,
ol —al = R, (@)= Rig @)+ (k). p(k(0) + (c(k()), 7(k(5)))
= (M/M})) E"0 — (M /M) E°P + (c(k (D), (k(0))) + (c(k (), n(k(3)))

for &m =0, n(k) defined in Lemma 4.1c, and (n(k)—1)v-dimensional vectors c(k),
n(k) = #(A4,), which depend only on my, ..., my.

Proof. Using the notation scheme in (A 1) (in the proofs of Lemmas 4.1 and 4.2) the
corollary follows from the fact that

a® = R%(x) + Loy (™ — 2. O
M, led\aFy

Since a is a 2-cluster decomposition in this lemma, then by Lemma 4.1, £ = £, e R".
Then for (ij) & A there is some constant ' depending only upon m,, ..., m such that

Har' — | — (M /M) |E] | < O3 €]
by Lemma A 1 and Lemma 4.9. The proof of Lemma 4.8 now follows from #. []

Proof of Lemma 4.9. We may assume that m < N. Otherwise, X, = X. We choose
some zel((U,);, 1) and set y=T,x with y= (5 £)" and the zero suppressed
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throughout the proof. Then there is some we U, such that

|/l x — ] < 0.

Therefore, |T,* (y — ')y < 8lx|y from which we can conclude that

Set & = x|y w,y =T,2", and

=yl =11, T (y=y)x
< NTINT =y s
< ONT 0 el (A 12)

By Lemma 3.1(ii), «’€ X, and by Lemma 4.1d, 4" = 0. Therefore, by (A 12),
0 0\\|?
s> o)e (o) -{e)

= [nl%.
X

Since [afy < 75" 129l +1gR) and | 754 = 7,17, then
(% + I€1%) = Il
Hence,
[l < O(1—8%)F (& < 201é]
for ¢ sufficiently small. g

W.D.E. expresses gratitude for support received from the Mathematics Component of NSF
EPSCoR in Alabama. Y.S. was partly supported by the Mathematics Component of NSF EPSCoR
in Alabama. R.T.I. and Y.S. were partly supported by the US NSF grant no. DMS-8719027. R.T.L.
and Y.S. express gratitude for support received from the UK SERC grant no. GRE/68044.

References

Agmon, S. 1982 Lectures on exponential decay of solutions of second-order elliptic equations : bounds
on eigenfunctions of N-body Schrodinger operators. Mathematical Notes 29. Princeton University
Press and the University of Tokyo Press.

Cycon, H., Froese, R., Kirsch, W. & Simon, B. 1987 Schridinger operators with application to
quantum mechanics and global geometry. Berlin, Heidelberg, New York and Tokyo: Texts and
Monographs in Physics, Springer-Verlag.

Donig, J. 1991 Finiteness of the lower spectrum of Schrodinger operators with singular potentials.
Proc. Am. math. Soc. 112, 489-501.

Efimov, V. 1970 Energy levels arising from resonant two-body forces in a three-body system.
Phys. Lett. B 33, 563-654.

Efimov, V. 1971 Weakly-bound states of three resonantly-interacting particles. Soviet J. Nucl.
Phys. 12, 589-595.

Evans, W. D. & Lewis, R. T. 1990 N-Body Schrédinger operators with finitely many bound states.
Trans. Am. math. Soc. 322, 593-626.

Evans. W. D., Lewis, R. T. & Saitd, Y. 1991a Some geometric spectral properties of N-body
Schrodinger operators. Arch. ration. Mech. Analysis 113, 377-400.

Evans, W. D., Lewis, R. T. & Saitd, Y. 19916 Zhislin’s theorem revisited. J. Analyse math. (In the
press.)

Hunziker, W. 1966 On the spectra of Schrodinger multiparticle Hamiltonians. Helv. phys. Acta 39,
451-462.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY A

PHILOSOPHICAL
TRANSACTIONS
OF

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

144 W.D. Evans, R. T. Lewts and Y. Saito

Hille, E. 1948 Non-oscillation theorems. Trans. Am. math. Soc. 64, 234-252.

Kato, T. 1951 Fundamental properties of Hamiltonian operators of Schrodinger type. Trans. Am.
math. Soc. 70, 195-211.

Kato, T. 1984 Perturbation theory for linear operators. Berlin, Heidelberg, New York and Tokyo:
Springer-Verlag.

Lieb, E. 1984a Bound on the maximum negative ionization of atoms and molecules. Phys. Rev.
A 29, 3018-3028.

Lieb, E. 19846 Atomic and molecular ionization. Phys. Rev. Lett. 52, 315.

Reed M. & Simon, B. 1979 Methods of modern mathematical physics, I11. Scattering theory. New
York: Academic Press.

Reed, M. & Simon, B. 1978 Methods of modern mathematical physics, IV. Analysis of operators. New
York: Academic Press.

Ruskai, M. B. 1989 Limits on stability of positive molecular ions. Lett. math. Phys. 18, 121-132.

Ruskai, M. B. 1990 Limit on the excess negative charge of a dynamic diatomic molecule. Annls
Inst. Henri Poincaré 52, 397-414.

Ruskai, M. B. 1991 Absence of bound states in extremely asymmetric positive diatomic
molecules. Communs math. Phys. 137, 553-566.

Sigal, I. M. 1982 Geometric methods in the quantum many-body problem. Nonexistence of very
negative ions. Communs math. Phys. 85, 309-324.

Sigalov, A. G. & Sigal, I. M. 1970 Description of the spectrum of the energy operator of quantum
mechanical systems that is invariant with respect to permutations of identical particles. Theor.

math. Phys. 5, 990-1005.

Simon, B. 1970 On the infinitude or finiteness of the number of bound states of an N-body
quantum system. I. Helv. phys. Acta 43, 607-630.

Simon, B. 1982 Schriodinger semigroups. Bull. AMS 7, 447-526.

Solovej, J. P. 1990 Asymptotic neutrality of diatomic molecules. Communs math. Phys. 130,
185-204.

Titchmarsh, E. C. 1958 Eigenfunction expansions associated with second-order differential equations.
Part IT. Oxford: Clarendon Press.

van Winter, C. 1964 Theory of finite systems of particles. I. Mat. Fys. Skr. Danske Vid. Selsk. 1,
1-60.

Vugal’ter, 8. A. & Zhislin, G. M. 1977 Finiteness of the discrete spectrum of many-particle
Hamiltonians in symmetric spaces. Theor. math. Phys. 32, 602-614.

Vugal'ter, S. A. & Zhislin, G. M. 1984 On the finiteness of discrete spectrum in the n-particle
problem. Rep. math. Phys. 19, 39-90.

Yafaev, D. R. 1972a The discrete spectrum of the three-particle Schrédinger operator. Soviet
Phys. Dokl. 17, 849-851.

Yafaev, D. R. 19726 The point spectrum in the quantum-mechanical problem of many particles.
Funct. Anal. Appl. 6, 349-350.

Yafaev, D. R. 1976 On the point spectrum in the quantum-mechanical many-body problem.
Math. USSR Izv. 10, 861-896.

Zhislin, G. M. 1960 Discussion of the spectrum of Schrédinger operators for systems of many

particles. T'r. Mosk. Mat. Obs. 9, 81-128.

Zhislin, G. M. 1969 Spectrum of differential operators of quantum-mechanical many-particle
systems in spaces of functions of a given symmetry. Math. USSR Izv. 3, 559-616.

Zhislin, G. M. 1971 On the finiteness of the discrete spectrum of the energy operator of negative
atomic and molecular ions. Theor. math. Phys. 7, 571-578.

Received 24 April 1991 ; accepted 28 June 1991

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

